

Introduction

This Sphinx extension allows authors to embed a JSON Schema [http://json-schema.org] in their documentation.

It arose out of a personal itch and implements what I needed.
Some features of JSON Schema are (not yet) implemented.
Also I can imagine that other display layouts are desired.

I only tested it for use with the draft 4 [http://json-schema.org/specification-links.html#draft-4] specification of JSON Schema.
I was pleasantly surprised to find that the software is useful to others as well.
Therefore it made sense to document its intended use.

Contents

	Installation
	Source code

	Docker image

	Directive
	Usage

	Options

	Schema extensions
	$$description

	$$target

	Organization

	Extending jsonschema
	Render custom keywords

Indices and tables

	Index

	Module Index

	Search Page

Changelog

Version 1.18.0

Expanding on the work of Pavel Odvody [https://github.com/shaded-enmity] with JSON Pointer
the :pass_unmodified: option is included.
This option prevents escaping the string pointed at.

Version 1.17.2

Ezequiel Orbe [https://github.com/eorbe] found, reported and fixed a bug escaping backspaces.

Version 1.17.0

Pavel Odvody [https://github.com/shaded-enmity] contributed the :hide_key: directive option.
This option allows you to hide certain keys, specified by a JSON Pointer specification, to be excluded
from rendering.

Version 1.16.11

Removed debugging code left in, pointed out by Kevin Landreth <https://github.com/CrackerJackMack>.

Version 1.16.10

iamdbychkov [https://github.com/iamdbychkov] added the :encoding: directive option.
This option allows explicit control of the encoding used to read a file instead of
relying on the operating system default.

Version 1.16.9

Bugfix.

Version 1.16.8

Jens Nielsen [https://github.com/jenshnielsen] improved rendering of string values.

Version 1.16.5-6

Bugfix version.

Version 1.16.4

Introduces the :lift_title: directive option suggested by ankostis [https://github.com/ankostis].
Ankostis also provided an example on how to extend the formatter to handle custom properties.

Fixed a bug in rendering the items attribute of the array type reported by nijel [https://github.com/nijel].

Version 1.16.1-3

Fixed bugs rendering the default and examples keywords.

Introduced the configuration entry jsonschema_options setting default values for the directive options
introduced in 1.16. The options now can accept a parameter to explicitly turn the option on or off.

Version 1.16

WouterTuinstra [https://github.com/WouterTuinstra] reimplemented support for dependencies and properly this time.
He also improved error handling and reporting and added a couple of options improving the handling of references.

The most important additions are the directive options :lift_description:, :lift_definitions:,
:auto_target: and :auto_reference:.

In addition to all that he also implemented support for the if, then and else keywords.

Version 1.15

Add support for the dependencies key.

Versions 1.12, 1.13 and 1.14

Solved several minor bugs.

Version 1.11

Solved a divergence of the standard reported by bbasic [https://github.com/bbasics].

Version 1.10

Ivan Vysotskyy [https://github.com/ivysotskyi] contributed the idea to use an array with
the description key resulting in the new $$description key.

Version 1.9

Tom Walter [https://github.com/EvilPuppetMaster] contributed the example support.

Version 1.4

Chris Holdgraf [https://github.com/choldgraf] contributed Python3 and yaml support.

Version 1.3

Add unicode support.

Version 1.2

Improved formatting.

Version 1.1

Implemented schema cross referencing.

Version 1.0

Initial release of a functioning plugin.

Installation

Obtain sphinx-jsonschema by installing it with pip:

sudo pip install sphinx-jsonschema

Then add it to your project by editing the conf.py file and
append ‘sphinx-jsonschema’ to the extensions array.

extensions = [
 'sphinx.ext.autodoc',
 'sphinx-jsonschema'
]

Source code

The source code for this extension can be found on GitHub [https://github.com/lnoor/sphinx-jsonschema].

Docker image

A Docker image containing Sphinx and a number of extensions, including sphinx-jsonschema, can be found
at Extended Sphinx [https://hub.docker.com/r/lnoor/sphinx-extended].
This Docker image is generated from the Dockerfile on Github [https://github.com/lnoor/docker-sphinx-extended].

Directive

The extension adds a single directive to Sphinx: jsonschema.
You provide it with either a file name, an HTTP(S) URL to a schema
or you may embed the schema inline.

The schemas are read by a YAML parser.
This means that you can write the schemas in either json or yaml notation
and they will be processed identically.

Usage

To display a schema fetched from a website:

.. jsonschema:: http://example.com/project/schema.json

To display a schema in a file referenced by an absolute path use:

.. jsonschema:: /var/www/project/schema.json

or with a path relative to the current document:

.. jsonschema:: schemas/sample.json

this assumes that next to the .rst file containing the above statement there
is a subdirectory schemas containing sample.json.

With any of the above references you can use JSON Pointer [https://tools.ietf.org/html/rfc6901]
notation to display a subschema:

.. jsonschema:: http://example.com/project/schema.json#/definitions/sample

.. jsonschema:: /var/www/project/schema.json#/definitions/sample

.. jsonschema:: schemas/sample.json#/definitions/sample

Alternatively you can embed the schema directly into your documentation:

.. jsonschema::

 {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "An example",
 "id": "http://example.com/schemas/example.json",
 "description": "This is just a tiny example of a schema rendered by `sphinx-jsonschema <http://github.com/lnoor/sphinx-jsonschema>`_.\n\nYes that's right you can use *reStructuredText* in a description.",
 "type": "string",
 "minLength": 10,
 "maxLength": 100,
 "pattern": "^[A-Z]+$"
 }

which should render as:

An example

	http://example.com/schemas/example.json

	This is just a tiny example of a schema rendered by sphinx-jsonschema [http://github.com/lnoor/sphinx-jsonschema].

Yes that’s right you can use reStructuredText in a description.

	type

	string

	maxLength

	100

	minLength

	10

	pattern

	^[A-Z]+$

It is also possible to render just a part of an embedded schema using a json pointer (per request Issue 17 [https://github.com/lnoor/sphinx-jsonschema/issues/17]:

.. jsonschema:: #/date

 {
 "title" : "supertitle1",
 "type": "object",
 "properties": {
 "startdate": {"$ref": "#/date"},
 "enddate": {"$ref": "#/date"},
 "manualdate_to1": {"$ref" : "#/manualdate"},
 "definitions1": {"$ref" : "#/definitions/bind"},
 "definitions3": {"$ref" : "#/locbind"}
 },
 "date": {
 "title": "Date",
 "$$target": ["#/date"],
 "description": "YYYY-MM-DD",
 "type": "string"
 }
 }

which renders:

Date

	YYYY-MM-DD

	type

	string

Options

There a couple of options implemented in sphinx-jsonschema that control the way a schema is rendered or processed.
These options are:

	lift_title (default: True)

	Uses the title to create a new section in your document and creates an anchor you can refer to using jsonschema’s
$ref or ReStructuredText’s :ref: notation.
When False the title becomes part of the table rendered from the schema, the table cannot be referenced and the
option :lift_description: is ignored.

	lift_description (default: False)

	Places the description between the title and the table rendering the schema.
This option is ignored when :lift_title: is False.

	lift_definitions (default: False)

	Removed the items under the definitions key and renders each of them separately as if they are top-level
schemas.

	auto_target (default: False)

	Automatically generate values for the $$target key.
Especially useful in combination with :lift_definitions:.

	auto_reference (default: False)

	Automatically resolves references when possible.
Works well with :auto_target: and :lift_definitions:.

	hide_key: (default: None)

	Hide parts of the schema matching comma separated list of JSON pointers

	hide_key_if_empty: (default: None)

	Hide parts of the schema matching comma separated list of JSON pointers if the value is empty

	encoding (default: None)

	Allows you to define the encoding used by the file containing the json schema.

Lift Title

By default the schema’s top level title is displayed above the table containing the remainder of the schema.
This title becomes a section that can be included in the table of contents and the index.
It is also used to resolve references to the schema from either other schemas of from elsewhere in the documentation.

This option mainly exists to suppress this behaviour.
One place where this is desirable is when using jsonschema to validate and document function parameters.
See issue 48 [https://github.com/lnoor/sphinx-jsonschema/issues/48] for an example.

Lift Description

Lifts the description from the table and places it between the title and the table.
You will need to have a title defined and the flag :lift_description: otherwise it will be included into
the table:

which renders:

Example Separate Description

This is just a tiny example of a schema rendered by sphinx-jsonschema [http://github.com/lnoor/sphinx-jsonschema].

Whereby the description can shown as text outside the table, and you can still use reStructuredText in a description.

	http://example.com/schemas/example.json

	type

	string

	maxLength

	100

	minLength

	10

	pattern

	^[A-Z]+$

Lift Definitions

To separate the definitions from the table you will need to have the flag :lift_definitions: included.
For each item inside the definitions it will make a new section with title and a table of the items inside.
It’s advised to also use the :auto_reference: flag to auto link $ref to a local definitions title.

.. jsonschema::
 :lift_definitions:

 {
 "title": "Example with definitions",
 "definitions": {
 "football_player": {
 "type": "object",
 "required": ["first_name", "last_name", "age"],
 "properties": {
 "first_name": {"type": "string"},
 "last_name": {"type": "string"},
 "age": {"type": "integer"}
 }
 },
 "football_team": {
 "type": "object",
 "required": ["team", "league"],
 "properties": {
 "team": {"type": "string"},
 "league": {"type": "string"},
 "year_founded": {"type": "integer"}
 }
 }
 }
 }

which renders:

Example with definitions

football_player

	type

	object

	properties

	
	first_name

	type

	string

	
	last_name

	type

	string

	
	age

	type

	integer

football_team

	type

	object

	properties

	
	team

	type

	string

	
	league

	type

	string

	
	year_founded

	type

	integer

Auto Target and Reference

With the :auto_target: flag there will be a target created with filename and optional pointer.
When you would include auto target on multiple JSON schemas with identical file names it will cause a conflict
within your build only the last build target will be used by the references.
This also applies if you would embed the schema directly into your documentation; in that case the document name is used
as the file name.

With the :auto_reference: flag there will be more logic applied to reduce the amount of undefined label warnings.
It will check if it is referencing to itself and if there would be a title to link to,
when there are titles in the same page that have an identical name it will cause linking issues.
If you didn’t separate definitions from the schema the $ref will become a text field without a linked reference.
If the $ref would point to an other schema from the path it will extract the filename it expected
to be included into your documentation with :auto_target:.

Mainly the :auto_reference: flag influences behavior of the existing $$target method and could potentially break links.

See below the schema whereby both options are included.
For each section it will create a target in this example filename of the document as the schema is added as context and it’s pointer if there would be one.

Example of Target & Reference this link as raw text using reStructuredText format would be: :ref:`directive.rst`.

And for the definition person the raw text would be: :ref:`directive.rst#/definitions/person`.

.. jsonschema::
 :lift_definitions:
 :auto_reference:
 :auto_target:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Example of Target & Reference",
 "type": "object",
 "properties": {
 "person": { "$ref": "#/definitions/person" }
 },
 "definitions": {
 "person": {
 "type": "object",
 "properties": {
 "name": { "type": "string" },
 "children": {
 "type": "array",
 "items": { "$ref": "#/definitions/person" },
 "default": []
 }
 }
 }
 }
}

which renders:

Example of Target & Reference

	type

	object

	properties

	
	person

	person

person

	type

	object

	properties

	
	name

	type

	string

	
	children

	type

	array

	default

	

	items

	person

Setting default values

When you want to use the options :lift_definitions: :lift_description, :auto_target
and :auto_reference in most schema renderings it is more convenient to set them once
for your whole project.

The conf.py option jsonschema_options lets you do so.
It takes a dict as value the boolean valued keys of which have the same name as the options.

So, in conf.py you can state:
.. code-block:: py

	jsonschema_options = {

	‘lift_description’: True,
‘aut_reference’: True

}

By default all four options are False.

Overruling defaults

The default values for the options can be overruled by setting the directive options.
They accept an optional argument which can be one of the words On, Off, True
or False. The default value for the argument is True.

Declare file encoding

The :encoding: option allows you to define the encoding used by the file containing
the json schema. When the operating system default encoding does not produce correct
results then this option allows you to specify the encoding to use.
When omitted the operating system default is used as it always has been. But it is now
possible to explicitly declare the expected encoding using :encoding: utf8.
You can use any encoding defined by Python’s codecs for your platform.

Hiding parts of the schema

Sometimes we want to omit certain keys from rendering to make the table more succicnt.
This can be achieved using the :hide_key: and :hide_key_if_empty: options to hide
all matching keys or all matching keys with empty associated value, respectively.
The options accept comma separated list of JSON pointers. Matching multiple keys
is possible using the wildcard syntax * for single level matching and ** for
deep matching.

.. jsonschema::
 :hide_key: /**/examples

This example will hide all examples fields regardless of where they are located
in the schema.
If your JSON pointer contains comma you need to place it inside quotes:

.. jsonschema::
 :hide_key: /**/examples,"/**/with, comma"

It is also possible to hide a key if their value is empty using :hide_key_if_empty:.

.. jsonschema::
 :hide_key_if_empty: /**/defaults

Prevent escaping of strings

Strings are sometimes subject to multiple evaluation passes when rendering.
This happens because sphinx-jsonschema renders a schema by transforming in into a table
and then recursively call on Sphinx to render the table.
To prevent unintended modifications due to this second pass some characters (such as ‘_’
and ‘*’ are escaped before the second pass.

Sometimes that doesn’t work out well and you don’t want to escape those characters.
The option :pass_unmodified: accepts one or more JSON pointers and prevents the strings
pointed at to be escaped.

.. jsonschema::
 :pass_unmodified: /examples/0

 {
 "examples": [
 "unescaped under_score",
 "escaped under_score"
]
 }

Schema extensions

$$description

The standard defines the description key as having a string value.
Since the JSON file format has no provision for some form of line continuation
this can result in unwieldy long strings.

To remedy the $$description key is introduced.
It can be used with and just like the description key.
It accepts an array of strings which it combines into a single string which is
then processed just like the description.

This makes it possible to create something like:

{
 ...
 "description": "The usual single string description",
 "$$description": [
 "+------------+------------+-----------+",
 "| Header 1 | Header 2 | Header 3 |",
 "+============+============+===========+",
 "| body row 1 | column 2 | column 3 |",
 "+------------+------------+-----------+",
 "| body row 2 | Cells may span columns.|",
 "+------------+------------+-----------+",
 "| body row 3 | Cells may | - Cells |",
 "+------------+ span rows. | - contain |",
 "| body row 4 | | - blocks. |",
 "+------------+------------+-----------+"
],
 ...
}

$$target

After some experimentation I concluded that I needed to extend JSON Schema.
Most of the time sphinx-jsonschema just does the ‘sensible’ thing.

The $ref key in JSON Schema posed a problem.
It works in conjunction with the id keyword to implement a schema inclusion method.

I wanted to replace the schema inclusion with a hypertext link to the included schema.
Working on a number of large schemas I wanted to document the subschemas as type definitions
that are being referenced or used by the main schemas.
Therefore I wanted to be able to display the subschema on a different documentation page and
have the referring document display a clickable link.

In order to implement this I needed to add the $$target key to JSON Schema.
$$target takes either a single string or an array of strings as parameter.

The string parameter must match the $ref parameter exactly.
So if you are using somewhere the schema:

{
 ...
 "$ref": "#/definitions/sample",
 ...
}

then the definitions section should read:

{
 ...
 "definitions": {
 "sample": {
 "title": "A sample",
 "$$target": "#/definitions/sample"
 ...
 }
 }
}

Note

that $ref and $$target share exactly the same string.

Note

also note the title field in sample.
This is required for the reference to work correctly.

When a referenced schema is used from more than one file it is possible
that the value of the $ref keywords is not equal.

Consider the case where schemas/service1/sample.json and schemas/service2/sample.json
both reference a something subschema located in schemas/service1/referenced.json
the objects may look like this in schemas/service1/sample.json:

{
 ...
 "id": "schemas/service1/sample.json",
 "$ref": "referenced.json#/something",
 ...
}

schemas/service2/sample.json would look like:

{
 ...
 "id": "schemas/service2/sample.json",
 "$ref": "../service1/referenced.json#/something",
 ...
}

This is why $target is allowed to have an array of strings as value in referenced.json:

{
 ...
 "title": "Something",
 "$$target": ["referenced.json#/something", "../service1/referenced.json#/something"],
 ...
}

Combining $$target, $ref and documentation files

In order to have $ref entries be displayed as clickable links you need to:

	give the referenced schema a title,

	give the referenced schema a $$target,

	include the referenced schema in the documentation.

The title is needed to create a proper section header for the referenced schema.
This section header is used to resolve the link generated by the $ref key.
The title is the link label.

The $$target is needed because sphinx-jsonschema does not resolve $ref like
a validator using the id key etc. The value of $$target should match the corresponding
$ref value exactly. When the schema is referenced from multiple locations using different
values for $ref then the value of $$target may be an array of strings instead of a single
string.

Finally, the referencing and referenced schemas must both be included explicitly in
the documentation.
The referenced schema, when part of a larger schema or set of schemas, can be included using
json pointer notation.

Example

The file schema.json contains:

{
 "calls": {
 "title": "Allows commercial calls",
 "description": "Person consents to receive commercial offers.",
 "type": "object",
 "properties": {
 "name": {"$ref": "types.json#/Name"},
 "telno": {"$ref": "types.json#/TelephoneNumber"},
 "may_call": {"$ref": "#/definitions/Options"}
 }
 },
 "definitions": {
 "Options": {
 "title": "Options",
 "description": "Embedded definition of type Options",
 "$$target": "#/definitions/Options",
 "type": "string",
 "enum": ["Yes", "No", "Maybe", "Don't care"]
 }
 }
}

The file types.json contains:

{
 "Name": {
 "title": "Name",
 "description": "Someone's first and lastname",
 "$$target": "types.json#/Name",
 "type": "string",
 "maxLength": 80,
 },
 "TelephoneNumber": {
 "title": "Telephone number",
 "description": "Someone's telephone number",
 "$$target": "types.json#/TelephoneNumber",
 "type": "string",
 "pattern": "[0-9]*"
 }
}

The Sphinx source file contains:

Caption
#######

Some blahblah about calling people.

.. jsonschema:: schema.json#/calls

More explanations ...

.. jsonschema:: schema.json#/definitions/Options

Types
~~~~~

Introduction on types.

.. jsonschema:: types.json#/Name

More info on Name.

.. jsonschema:: types.json#/TelephoneNumber

Story about TelephoneNumber construction.





Which would render as:


Caption

Some blahblah about calling people.


Benefits

This method lets you arrange the schema parts to match the structure of your documentation
and also allows you to create multiple copies of a schema in your documentation.



Allows commercial calls







	Person consents to receive commercial offers.



	type

	object



	properties



	
	name





	Name



	
	telno





	Telephone number



	
	may_call





	Options







More explanations …


Options







	Embedded definition of type Options



	type

	string



	enum

	Yes, No, Maybe, Don’t care








Types

Introduction on types.


Name






	Someone’s first and lastname



	type

	string



	maxLength

	80







More info on Name.


Telephone number






	Someone’s telephone number



	type

	string



	pattern

	[0-9]*







Story about TelephoneNumber construction.









          

      

      

    

  

    
      
          
            
  
Organization

As stated earlier, I needed this to manage and document rather large schemas.
I wanted to organize these schemas in such a way that the number of levels
remained under control.

To achieve this I wanted the schemas to be able to reference other (reusable) schemas
using the $ref keyword. These subschemas, should be documented somewhere else but
should be all in a single file for performance reasons.

So in order to separate storage and representation I require each $ref-erenced subschema
to be included explicitly in your .rst file.




          

      

      

    

  

    
      
          
            
  
Extending jsonschema

I didn’t create jsonschema with extensibility in mind.
But I also never thought so many people would find it useful.


Render custom keywords

That being said ankostis [https://github.com/ankostis] needed a way to render his own custom keywords.
This is his solution, you need to append this code to your conf.py file.

## PATCH `sphinx-jsonschema`
#  to render the extra `units`` and ``tags`` schema properties
#
def _patched_sphinx_jsonschema_simpletype(self, schema):
    """Render the *extra* ``units`` and ``tags`` schema properties for every object."""
    rows = _original_sphinx_jsonschema_simpletype(self, schema)

    if "units" in schema:
        units = schema["units"]
        units = f"``{units}``"
        rows.append(self._line(self._cell("units"), self._cell(units)))
        del schema["units"]

    if "tags" in schema:
        tags = ", ".join(f"``{tag}``" for tag in schema["tags"])
        rows.append(self._line(self._cell("tags"), self._cell(tags)))
        del schema["tags"]

    return rows

sjs_wide_format = importlib.import_module("sphinx-jsonschema.wide_format")
_original_sphinx_jsonschema_simpletype = sjs_wide_format.WideFormat._simpletype  # type: ignore
sjs_wide_format.WideFormat._simpletype = _patched_sphinx_jsonschema_simpletype  # type: ignore









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/up.png





nav.xhtml

    
      Table of Contents


      
        		
          Introduction
        


        		
          Installation
          
            		
              Source code
            


            		
              Docker image
            


          


        


        		
          Directive
          
            		
              Usage
              
                		
                  An example
                


                		
                  Date
                


              


            


            		
              Options
              
                		
                  Lift Title
                


                		
                  Lift Description
                


                		
                  Lift Definitions
                


                		
                  Auto Target and Reference
                


                		
                  Setting default values
                


                		
                  Declare file encoding
                


                		
                  Hiding parts of the schema
                


                		
                  Prevent escaping of strings
                


              


            


          


        


        		
          Schema extensions
          
            		
              $$description
            


            		
              $$target
              
                		
                  Combining $$target, $ref and documentation files
                


              


            


          


        


        		
          Organization
        


        		
          Extending jsonschema
          
            		
              Render custom keywords
            


          


        


      


    
  

_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





_static/up-pressed.png





_static/ajax-loader.gif





_static/comment-bright.png





