
Sphinx JSON Schema Documentation
Release 1.17.2

Leo Noordergraaf

Apr 20, 2022

Contents

1 Contents 3
1.1 Installation . 3
1.2 Directive . 3
1.3 Schema extensions . 10
1.4 Organization . 15
1.5 Extending jsonschema . 15

2 Indices and tables 17

3 Changelog 19
3.1 Version 1.18.0 . 19
3.2 Version 1.17.2 . 19
3.3 Version 1.17.0 . 19
3.4 Version 1.16.11 . 19
3.5 Version 1.16.10 . 19
3.6 Version 1.16.9 . 20
3.7 Version 1.16.8 . 20
3.8 Version 1.16.5-6 . 20
3.9 Version 1.16.4 . 20
3.10 Version 1.16.1-3 . 20
3.11 Version 1.16 . 20
3.12 Version 1.15 . 20
3.13 Versions 1.12, 1.13 and 1.14 . 20
3.14 Version 1.11 . 21
3.15 Version 1.10 . 21
3.16 Version 1.9 . 21
3.17 Version 1.4 . 21
3.18 Version 1.3 . 21
3.19 Version 1.2 . 21
3.20 Version 1.1 . 21
3.21 Version 1.0 . 21

i

ii

Sphinx JSON Schema Documentation, Release 1.17.2

This Sphinx extension allows authors to embed a JSON Schema in their documentation.

It arose out of a personal itch and implements what I needed. Some features of JSON Schema are (not yet) imple-
mented. Also I can imagine that other display layouts are desired.

I only tested it for use with the draft 4 specification of JSON Schema. I was pleasantly surprised to find that the
software is useful to others as well. Therefore it made sense to document its intended use.

Contents 1

http://json-schema.org
http://json-schema.org/specification-links.html#draft-4

Sphinx JSON Schema Documentation, Release 1.17.2

2 Contents

CHAPTER 1

Contents

1.1 Installation

Obtain sphinx-jsonschema by installing it with pip:

sudo pip install sphinx-jsonschema

Then add it to your project by editing the conf.py file and append ‘sphinx-jsonschema’ to the extensions array.

extensions = [
'sphinx.ext.autodoc',
'sphinx-jsonschema'

]

1.1.1 Source code

The source code for this extension can be found on GitHub.

1.1.2 Docker image

A Docker image containing Sphinx and a number of extensions, including sphinx-jsonschema, can be found at Ex-
tended Sphinx. This Docker image is generated from the Dockerfile on Github.

1.2 Directive

The extension adds a single directive to Sphinx: jsonschema. You provide it with either a file name, an HTTP(S) URL
to a schema or you may embed the schema inline.

The schemas are read by a YAML parser. This means that you can write the schemas in either json or yaml notation
and they will be processed identically.

3

https://github.com/lnoor/sphinx-jsonschema
https://hub.docker.com/r/lnoor/sphinx-extended
https://hub.docker.com/r/lnoor/sphinx-extended
https://github.com/lnoor/docker-sphinx-extended

Sphinx JSON Schema Documentation, Release 1.17.2

1.2.1 Usage

To display a schema fetched from a website:

.. jsonschema:: http://example.com/project/schema.json

To display a schema in a file referenced by an absolute path use:

.. jsonschema:: /var/www/project/schema.json

or with a path relative to the current document:

.. jsonschema:: schemas/sample.json

this assumes that next to the .rst file containing the above statement there is a subdirectory schemas containing
sample.json.

With any of the above references you can use JSON Pointer notation to display a subschema:

.. jsonschema:: http://example.com/project/schema.json#/definitions/sample

.. jsonschema:: /var/www/project/schema.json#/definitions/sample

.. jsonschema:: schemas/sample.json#/definitions/sample

Alternatively you can embed the schema directly into your documentation:

.. jsonschema::

{
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "An example",
"id": "http://example.com/schemas/example.json",
"description": "This is just a tiny example of a schema rendered by `sphinx-

→˓jsonschema <http://github.com/lnoor/sphinx-jsonschema>`_.\n\nYes that's right you
→˓can use *reStructuredText* in a description.",

"type": "string",
"minLength": 10,
"maxLength": 100,
"pattern": "^[A-Z]+$"

}

which should render as:

An example

http://example.com/schemas/example.json
This is just a tiny example of a schema rendered by sphinx-jsonschema.
Yes that’s right you can use reStructuredText in a description.
type string
maxLength 100
minLength 10
pattern ^[A-Z]+$

It is also possible to render just a part of an embedded schema using a json pointer (per request Issue 17:

4 Chapter 1. Contents

https://tools.ietf.org/html/rfc6901
http://example.com/schemas/example.json
http://github.com/lnoor/sphinx-jsonschema
https://github.com/lnoor/sphinx-jsonschema/issues/17

Sphinx JSON Schema Documentation, Release 1.17.2

.. jsonschema:: #/date

{
"title" : "supertitle1",
"type": "object",
"properties": {

"startdate": {"$ref": "#/date"},
"enddate": {"$ref": "#/date"},
"manualdate_to1": {"$ref" : "#/manualdate"},
"definitions1": {"$ref" : "#/definitions/bind"},
"definitions3": {"$ref" : "#/locbind"}

},
"date": {

"title": "Date",
"$$target": ["#/date"],
"description": "YYYY-MM-DD",
"type": "string"

}
}

which renders:

Date

YYYY-MM-DD
type string

1.2.2 Options

There a couple of options implemented in sphinx-jsonschema that control the way a schema is rendered or processed.
These options are:

lift_title (default: True) Uses the title to create a new section in your document and creates an anchor you can refer
to using jsonschema’s $ref or ReStructuredText’s :ref: notation. When False the title becomes part of the
table rendered from the schema, the table cannot be referenced and the option :lift_description: is
ignored.

lift_description (default: False) Places the description between the title and the table rendering the schema. This
option is ignored when :lift_title: is False.

lift_definitions (default: False) Removed the items under the definitions key and renders each of them sepa-
rately as if they are top-level schemas.

auto_target (default: False) Automatically generate values for the $$target key. Especially useful in combina-
tion with :lift_definitions:.

auto_reference (default: False) Automatically resolves references when possible. Works well with
:auto_target: and :lift_definitions:.

hide_key: (default: None) Hide parts of the schema matching comma separated list of JSON pointers

hide_key_if_empty: (default: None) Hide parts of the schema matching comma separated list of JSON pointers if
the value is empty

encoding (default: None) Allows you to define the encoding used by the file containing the json schema.

1.2. Directive 5

Sphinx JSON Schema Documentation, Release 1.17.2

Lift Title

By default the schema’s top level title is displayed above the table containing the remainder of the schema. This title
becomes a section that can be included in the table of contents and the index. It is also used to resolve references to
the schema from either other schemas of from elsewhere in the documentation.

This option mainly exists to suppress this behaviour. One place where this is desirable is when using jsonschema to
validate and document function parameters. See issue 48 for an example.

Lift Description

Lifts the description from the table and places it between the title and the table. You will need to have a title
defined and the flag :lift_description: otherwise it will be included into the table:

which renders:

Example Separate Description

This is just a tiny example of a schema rendered by sphinx-jsonschema.

Whereby the description can shown as text outside the table, and you can still use reStructuredText in a description.

http://example.com/schemas/example.json
type string
maxLength 100
minLength 10
pattern ^[A-Z]+$

Lift Definitions

To separate the definitions from the table you will need to have the flag :lift_definitions: included. For each
item inside the definitions it will make a new section with title and a table of the items inside. It’s advised to also
use the :auto_reference: flag to auto link $ref to a local definitions title.

.. jsonschema::
:lift_definitions:

{
"title": "Example with definitions",
"definitions": {

"football_player": {
"type": "object",
"required": ["first_name", "last_name", "age"],
"properties": {

"first_name": {"type": "string"},
"last_name": {"type": "string"},
"age": {"type": "integer"}

}
},
"football_team": {

"type": "object",
"required": ["team", "league"],
"properties": {

(continues on next page)

6 Chapter 1. Contents

https://github.com/lnoor/sphinx-jsonschema/issues/48
http://github.com/lnoor/sphinx-jsonschema
http://example.com/schemas/example.json

Sphinx JSON Schema Documentation, Release 1.17.2

(continued from previous page)

"team": {"type": "string"},
"league": {"type": "string"},
"year_founded": {"type": "integer"}

}
}

}
}

which renders:

Example with definitions

football_player

type object
properties

• first_name
type string

• last_name
type string

• age type integer

football_team

type object
properties

• team type string

• league
type string

• year_founded
type integer

Auto Target and Reference

With the :auto_target: flag there will be a target created with filename and optional pointer. When you would include
auto target on multiple JSON schemas with identical file names it will cause a conflict within your build only the
last build target will be used by the references. This also applies if you would embed the schema directly into your
documentation; in that case the document name is used as the file name.

With the :auto_reference: flag there will be more logic applied to reduce the amount of undefined label warnings. It
will check if it is referencing to itself and if there would be a title to link to, when there are titles in the same page
that have an identical name it will cause linking issues. If you didn’t separate definitions from the schema the $ref

1.2. Directive 7

Sphinx JSON Schema Documentation, Release 1.17.2

will become a text field without a linked reference. If the $ref would point to an other schema from the path it will
extract the filename it expected to be included into your documentation with :auto_target:.

Mainly the :auto_reference: flag influences behavior of the existing $$target method and could potentially break
links.

See below the schema whereby both options are included. For each section it will create a target in this example
filename of the document as the schema is added as context and it’s pointer if there would be one.
Example of Target & Reference this link as raw text using reStructuredText format would be: :ref:‘directive.rst‘.
And for the definition person the raw text would be: :ref:‘directive.rst#/definitions/person‘.

.. jsonschema::
:lift_definitions:
:auto_reference:
:auto_target:

{
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "Example of Target & Reference",
"type": "object",
"properties": {

"person": { "$ref": "#/definitions/person" }
},
"definitions": {

"person": {
"type": "object",
"properties": {

"name": { "type": "string" },
"children": {

"type": "array",
"items": { "$ref": "#/definitions/person" },
"default": []

}
}

}
}

}

which renders:

Example of Target & Reference

type object
properties

• person person

8 Chapter 1. Contents

Sphinx JSON Schema Documentation, Release 1.17.2

person

type object
properties

• name type string

• children type array
default
items person

Setting default values

When you want to use the options :lift_definitions: :lift_description, :auto_target and :auto_reference in most schema
renderings it is more convenient to set them once for your whole project.

The conf.py option jsonschema_options lets you do so. It takes a dict as value the boolean valued keys of which
have the same name as the options.

So, in conf.py you can state: .. code-block:: py

jsonschema_options = { ‘lift_description’: True, ‘aut_reference’: True

}

By default all four options are False.

Overruling defaults

The default values for the options can be overruled by setting the directive options. They accept an optional argument
which can be one of the words On, Off, True or False. The default value for the argument is True.

Declare file encoding

The :encoding: option allows you to define the encoding used by the file containing the json schema. When the
operating system default encoding does not produce correct results then this option allows you to specify the encoding
to use. When omitted the operating system default is used as it always has been. But it is now possible to explicitly
declare the expected encoding using :encoding: utf8. You can use any encoding defined by Python’s codecs
for your platform.

Hiding parts of the schema

Sometimes we want to omit certain keys from rendering to make the table more succicnt. This can be achieved using
the :hide_key: and :hide_key_if_empty: options to hide all matching keys or all matching keys with empty
associated value, respectively. The options accept comma separated list of JSON pointers. Matching multiple keys is
possible using the wildcard syntax * for single level matching and ** for deep matching.

.. jsonschema::
:hide_key: /**/examples

This example will hide all examples fields regardless of where they are located in the schema. If your JSON pointer
contains comma you need to place it inside quotes:

1.2. Directive 9

Sphinx JSON Schema Documentation, Release 1.17.2

.. jsonschema::
:hide_key: /**/examples,"/**/with, comma"

It is also possible to hide a key if their value is empty using :hide_key_if_empty:.

.. jsonschema::
:hide_key_if_empty: /**/defaults

Prevent escaping of strings

Strings are sometimes subject to multiple evaluation passes when rendering. This happens because sphinx-jsonschema
renders a schema by transforming in into a table and then recursively call on Sphinx to render the table. To prevent
unintended modifications due to this second pass some characters (such as ‘_’ and ‘*’ are escaped before the second
pass.

Sometimes that doesn’t work out well and you don’t want to escape those characters. The option
:pass_unmodified: accepts one or more JSON pointers and prevents the strings pointed at to be escaped.

.. jsonschema::
:pass_unmodified: /examples/0

{
"examples": [

"unescaped under_score",
"escaped under_score"

]
}

1.3 Schema extensions

1.3.1 $$description

The standard defines the description key as having a string value. Since the JSON file format has no provision
for some form of line continuation this can result in unwieldy long strings.

To remedy the $$description key is introduced. It can be used with and just like the description key. It
accepts an array of strings which it combines into a single string which is then processed just like the description.

This makes it possible to create something like:

{
...
"description": "The usual single string description",
"$$description": [

"+------------+------------+-----------+",
"| Header 1 | Header 2 | Header 3 |",
"+============+============+===========+",
"| body row 1 | column 2 | column 3 |",
"+------------+------------+-----------+",
"| body row 2 | Cells may span columns.|",
"+------------+------------+-----------+",
"| body row 3 | Cells may | - Cells |",
"+------------+ span rows. | - contain |",

(continues on next page)

10 Chapter 1. Contents

Sphinx JSON Schema Documentation, Release 1.17.2

(continued from previous page)

"| body row 4 | | - blocks. |",
"+------------+------------+-----------+"

],
...

}

1.3.2 $$target

After some experimentation I concluded that I needed to extend JSON Schema. Most of the time sphinx-jsonschema
just does the ‘sensible’ thing.

The $ref key in JSON Schema posed a problem. It works in conjunction with the id keyword to implement a schema
inclusion method.

I wanted to replace the schema inclusion with a hypertext link to the included schema. Working on a number of
large schemas I wanted to document the subschemas as type definitions that are being referenced or used by the main
schemas. Therefore I wanted to be able to display the subschema on a different documentation page and have the
referring document display a clickable link.

In order to implement this I needed to add the $$target key to JSON Schema. $$target takes either a single string
or an array of strings as parameter.

The string parameter must match the $ref parameter exactly. So if you are using somewhere the schema:

{
...
"$ref": "#/definitions/sample",
...

}

then the definitions section should read:

{
...
"definitions": {

"sample": {
"title": "A sample",
"$$target": "#/definitions/sample"
...

}
}

}

Note: that $ref and $$target share exactly the same string.

Note: also note the title field in sample. This is required for the reference to work correctly.

When a referenced schema is used from more than one file it is possible that the value of the $ref keywords is not
equal.

Consider the case where schemas/service1/sample.json and schemas/service2/sample.json
both reference a something subschema located in schemas/service1/referenced.json the objects may
look like this in schemas/service1/sample.json:

1.3. Schema extensions 11

Sphinx JSON Schema Documentation, Release 1.17.2

{
...
"id": "schemas/service1/sample.json",
"$ref": "referenced.json#/something",
...

}

schemas/service2/sample.json would look like:

{
...
"id": "schemas/service2/sample.json",
"$ref": "../service1/referenced.json#/something",
...

}

This is why $target is allowed to have an array of strings as value in referenced.json:

{
...
"title": "Something",
"$$target": ["referenced.json#/something", "../service1/referenced.json#/something

→˓"],
...

}

Combining $$target, $ref and documentation files

In order to have $ref entries be displayed as clickable links you need to:

1. give the referenced schema a title,

2. give the referenced schema a $$target,

3. include the referenced schema in the documentation.

The title is needed to create a proper section header for the referenced schema. This section header is used to resolve
the link generated by the $ref key. The title is the link label.

The $$target is needed because sphinx-jsonschema does not resolve $ref like a validator using the id key etc. The
value of $$target should match the corresponding $ref value exactly. When the schema is referenced from multiple
locations using different values for $ref then the value of $$target may be an array of strings instead of a single string.

Finally, the referencing and referenced schemas must both be included explicitly in the documentation. The referenced
schema, when part of a larger schema or set of schemas, can be included using json pointer notation.

Example

The file schema.json contains:

{
"calls": {

"title": "Allows commercial calls",
"description": "Person consents to receive commercial offers.",
"type": "object",
"properties": {

(continues on next page)

12 Chapter 1. Contents

Sphinx JSON Schema Documentation, Release 1.17.2

(continued from previous page)

"name": {"$ref": "types.json#/Name"},
"telno": {"$ref": "types.json#/TelephoneNumber"},
"may_call": {"$ref": "#/definitions/Options"}

}
},
"definitions": {

"Options": {
"title": "Options",
"description": "Embedded definition of type Options",
"$$target": "#/definitions/Options",
"type": "string",
"enum": ["Yes", "No", "Maybe", "Don't care"]

}
}

}

The file types.json contains:

{
"Name": {

"title": "Name",
"description": "Someone's first and lastname",
"$$target": "types.json#/Name",
"type": "string",
"maxLength": 80,

},
"TelephoneNumber": {

"title": "Telephone number",
"description": "Someone's telephone number",
"$$target": "types.json#/TelephoneNumber",
"type": "string",
"pattern": "[0-9]*"

}
}

The Sphinx source file contains:

Caption
#######

Some blahblah about calling people.

.. jsonschema:: schema.json#/calls

More explanations ...

.. jsonschema:: schema.json#/definitions/Options

Types
~~~~~

Introduction on types.

.. jsonschema:: types.json#/Name

More info on Name.

(continues on next page)

1.3. Schema extensions 13



Sphinx JSON Schema Documentation, Release 1.17.2

(continued from previous page)

.. jsonschema:: types.json#/TelephoneNumber

Story about TelephoneNumber construction.

Which would render as:

Caption

Some blahblah about calling people.

Benefits

This method lets you arrange the schema parts to match the structure of your documentation and also allows you to
create multiple copies of a schema in your documentation.

Allows commercial calls

Person consents to receive commercial offers.
type object
properties

• name Name

• telno
Telephone number

• may_call
Options

More explanations . . .

Options

Embedded definition of type Options
type string
enum Yes, No, Maybe, Don’t care

Types

Introduction on types.

14 Chapter 1. Contents



Sphinx JSON Schema Documentation, Release 1.17.2

Name

Someone’s first and lastname
type string
maxLength 80

More info on Name.

Telephone number

Someone’s telephone number
type string
pattern [0-9]*

Story about TelephoneNumber construction.

1.4 Organization

As stated earlier, I needed this to manage and document rather large schemas. I wanted to organize these schemas in
such a way that the number of levels remained under control.

To achieve this I wanted the schemas to be able to reference other (reusable) schemas using the $ref keyword. These
subschemas, should be documented somewhere else but should be all in a single file for performance reasons.

So in order to separate storage and representation I require each $ref-erenced subschema to be included explicitly in
your .rst file.

1.5 Extending jsonschema

I didn’t create jsonschema with extensibility in mind. But I also never thought so many people would find it useful.

1.5.1 Render custom keywords

That being said ankostis needed a way to render his own custom keywords. This is his solution, you need to append
this code to your conf.py file.

## PATCH `sphinx-jsonschema`
# to render the extra `units`` and ``tags`` schema properties
#
def _patched_sphinx_jsonschema_simpletype(self, schema):

"""Render the *extra* ``units`` and ``tags`` schema properties for every object.""
→˓"

rows = _original_sphinx_jsonschema_simpletype(self, schema)

if "units" in schema:
units = schema["units"]
units = f"``{units}``"
rows.append(self._line(self._cell("units"), self._cell(units)))

(continues on next page)

1.4. Organization 15

https://github.com/ankostis


Sphinx JSON Schema Documentation, Release 1.17.2

(continued from previous page)

del schema["units"]

if "tags" in schema:
tags = ", ".join(f"``{tag}``" for tag in schema["tags"])
rows.append(self._line(self._cell("tags"), self._cell(tags)))
del schema["tags"]

return rows

sjs_wide_format = importlib.import_module("sphinx-jsonschema.wide_format")
_original_sphinx_jsonschema_simpletype = sjs_wide_format.WideFormat._simpletype #
→˓type: ignore
sjs_wide_format.WideFormat._simpletype = _patched_sphinx_jsonschema_simpletype #
→˓type: ignore

16 Chapter 1. Contents



CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17



Sphinx JSON Schema Documentation, Release 1.17.2

18 Chapter 2. Indices and tables



CHAPTER 3

Changelog

3.1 Version 1.18.0

Expanding on the work of Pavel Odvody with JSON Pointer the :pass_unmodified: option is included. This
option prevents escaping the string pointed at.

3.2 Version 1.17.2

Ezequiel Orbe found, reported and fixed a bug escaping backspaces.

3.3 Version 1.17.0

Pavel Odvody contributed the :hide_key: directive option. This option allows you to hide certain keys, specified
by a JSON Pointer specification, to be excluded from rendering.

3.4 Version 1.16.11

Removed debugging code left in, pointed out by Kevin Landreth <https://github.com/CrackerJackMack>.

3.5 Version 1.16.10

iamdbychkov added the :encoding: directive option. This option allows explicit control of the encoding used to
read a file instead of relying on the operating system default.

19

https://github.com/shaded-enmity
https://github.com/eorbe
https://github.com/shaded-enmity
https://github.com/iamdbychkov


Sphinx JSON Schema Documentation, Release 1.17.2

3.6 Version 1.16.9

Bugfix.

3.7 Version 1.16.8

Jens Nielsen improved rendering of string values.

3.8 Version 1.16.5-6

Bugfix version.

3.9 Version 1.16.4

Introduces the :lift_title: directive option suggested by ankostis. Ankostis also provided an example on how
to extend the formatter to handle custom properties.

Fixed a bug in rendering the items attribute of the array type reported by nijel.

3.10 Version 1.16.1-3

Fixed bugs rendering the default and examples keywords.

Introduced the configuration entry jsonschema_options setting default values for the directive options intro-
duced in 1.16. The options now can accept a parameter to explicitly turn the option on or off.

3.11 Version 1.16

WouterTuinstra reimplemented support for dependencies and properly this time. He also improved error handling
and reporting and added a couple of options improving the handling of references.

The most important additions are the directive options :lift_description:, :lift_definitions:,
:auto_target: and :auto_reference:.

In addition to all that he also implemented support for the if, then and else keywords.

3.12 Version 1.15

Add support for the dependencies key.

3.13 Versions 1.12, 1.13 and 1.14

Solved several minor bugs.

20 Chapter 3. Changelog

https://github.com/jenshnielsen
https://github.com/ankostis
https://github.com/nijel
https://github.com/WouterTuinstra


Sphinx JSON Schema Documentation, Release 1.17.2

3.14 Version 1.11

Solved a divergence of the standard reported by bbasic.

3.15 Version 1.10

Ivan Vysotskyy contributed the idea to use an array with the description key resulting in the new
$$description key.

3.16 Version 1.9

Tom Walter contributed the example support.

3.17 Version 1.4

Chris Holdgraf contributed Python3 and yaml support.

3.18 Version 1.3

Add unicode support.

3.19 Version 1.2

Improved formatting.

3.20 Version 1.1

Implemented schema cross referencing.

3.21 Version 1.0

Initial release of a functioning plugin.

3.14. Version 1.11 21

https://github.com/bbasics
https://github.com/ivysotskyi
https://github.com/EvilPuppetMaster
https://github.com/choldgraf

	Contents
	Installation
	Directive
	Schema extensions
	Organization
	Extending jsonschema

	Indices and tables
	Changelog
	Version 1.18.0
	Version 1.17.2
	Version 1.17.0
	Version 1.16.11
	Version 1.16.10
	Version 1.16.9
	Version 1.16.8
	Version 1.16.5-6
	Version 1.16.4
	Version 1.16.1-3
	Version 1.16
	Version 1.15
	Versions 1.12, 1.13 and 1.14
	Version 1.11
	Version 1.10
	Version 1.9
	Version 1.4
	Version 1.3
	Version 1.2
	Version 1.1
	Version 1.0


